圓的面積教案
作為一位兢兢業(yè)業(yè)的人民教師,就難以避免地要準備教案,教案有利于教學水平的提高,有助于教研活動的開展。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家收集的圓的面積教案,僅供參考,大家一起來看看吧。
圓的面積教案1
教學內容:
教科書第67-68頁。
教學目標:
1、使學生理解圓面積公式的推導過程,掌握求圓面積的方法并能正確計算;并能運用公式解答一些簡單的實際問題。
2、通過操作,小組合作等教學活動,培養(yǎng)學生的動手實踐能力,分析、觀察和概括能力,發(fā)展學生的空間概念。
德育目標:
滲透極限思想,進行辯證唯物主義觀念的啟蒙教育。
教學重點:
正確計算圓的面積
教學難點:
圓面積公式的推導
學具準備:
水彩筆、剪刀、附頁1
教具準備:
多媒體課件
教學過程:
一、 導入新課
請看一幅圖,從圖中你發(fā)現(xiàn)了什么信息?
只要知道了圓的面積,就可以解決這個問題,這節(jié)課我們就一起來學習圓的面積。
二、新授
1、什么是圓的面積?
。1)涂出一個圓的面積
。2)用自己的話說什么是圓的面積?
2、回憶平行四邊形、三角形、梯形的面積計算公式用什么方法推導的?
3、能不能用剪、拼的方法把圓轉換成我們學過的圖形?
4、學生拿附頁1進行剪拼,看能轉換成我們學過的什么圖形?
5、學生匯報后,課件演示。
6、得出結論:分的等份數(shù)越多,拼出的圖形越接近長方形,無限地分下去,最終拼出的圖形就是長方形、
7、轉化后的長方形的長和寬與原來的圓有什么關系?
小組合作學習,討論以下兩個問題:
1) 轉化后長方形的長相當于什么?寬相當于什么?
2) 你能從計算長方形的面積推導出計算圓面積的公式嗎?
8、匯報討論結果,師板書
圓的面積=長方形的面積
=長×寬
。溅衦×r
。溅衦2
9、運用新知識,解決問題。
1)r=5cm,求圓的面積
2)課始主體圖中的問題
3)書P703.
三、總結:
小結本課知識,提出要求,希望大家能運用我們今天的所學所得解決我們生活中遇到的更多問題。
板書設計:
圓的面積
剪、拼==》轉化
圓的面積=長方形的面積
。介L×寬
。溅衦×r
。溅衦2
S圓=πr2
教后反思:
本課的教學首先讓學生在實踐中操作感知,理解圓的'面積的具體含義。接著讓學生回憶舊知,引導學生應用舊知類比遷移。這樣,既實現(xiàn)了有意識地學法指導,又幫助學生找到了解決問題的策略。然后給學生提供了自主剪拼的時間,也是有意識地給學生提供了解決問題的方法和途徑。然而盡管給了比較充足的時間,學生能夠完成剪拼后轉化成學過的其它圖形的還是少數(shù)。因此運用了多媒體課件演示,化靜為動,化虛為實,幫助學生把抽象的內容具體化,進而加深對圓面積公式推導過程的理解。引導學生通過實驗,采用轉化的方法,小組合作學習,利用等積變形把圓面積轉化為近似的長方形,討論推導圓面積計算公式。最后安排了坡度適當、由易到難的練習題,使學生由淺入深地掌握了知識,形成了技能。
圓的面積教案2
教學內容:
圓的面積。
教學目標:
1. 通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2. 激發(fā)學生參與整個課堂教學活動的學習興趣, 培養(yǎng)學生的分析、觀察和概括能力,發(fā)展學生的空間觀念。
3. 滲透轉化的數(shù)學思想和極限思想。
教學重點:
正確計算圓的面積。
教學難點:
圓面積公式的推導。
學情分析:
本課是在學生掌握了面積的含義及長方形、正方形等平面圖形面積的計算方法,認識了圓,會計算圓的周長的基礎上進行教學的,教學時要注意遵循學生的認識規(guī)律,重視學生獲取知識的思維過程,重視從學生的生活經(jīng)驗和已有的知識出發(fā)。
學法指導:
教學本課時,重點引導學生提出將圓割拼成已學過的圖形,組織學生動手操作,讓學生主動參與知識形成的過程,從而培養(yǎng)學生的創(chuàng)新意識、實踐能力,并發(fā)展學生的空間觀念。
教具準備:
多媒體課件,圓片。
學具準備:
把圓片分成十六等分,并按課本圖所示,剪拼并貼成近似長方形。
教學設計:
一、復習舊知,導入新課
1. 前面我們學習了圓、圓的周長。如果圓的半徑用r表示,周長怎樣表示?(2πr)周長的一半怎樣表示?(πr)
2. 課件:出示一塊圓形的桌布。如果要給這塊桌布的邊縫上花邊,是求什么?(圓形桌布的周長)
3.件:出示一塊圓形的鏡框。如果要鏡框配一塊玻璃,至少需要多大?是求什么?(圓的面積)誰能指出這個圓的面積?誰能概括一下什么是圓的面積?請同學們用手摸出學具圓的面積。
提問:如果圓的半徑是2分米,你能猜猜這塊玻璃到底有多大?(同學們紛紛地猜測,有的學生可能說這個圓面小于所在的正方形面積)
這塊圓形玻璃有多大,就是要求圓形的面積,這節(jié)課我們一起來研究怎樣計算圓的面積。(板書課題:圓的面積)
二、動手操作,探索新知
1. 回憶平行四邊形、三角形、梯形面積計算公式推導過程。
。1)以前我們學習了平行四邊形、三角形和梯形的面積計算公式。請同學們回想一下,這些圖形的面積計算公式是怎樣推導出來的?(學生回答,師用課件演示。)
。2)通過回憶這三種平面圖形面積計算公式的推導,你發(fā)現(xiàn)了什么?(發(fā)現(xiàn)這三種平面圖形都是轉化為學過的圖形來推導出它們的面積計算公式。)
。3)能不能把圓轉化為學過的圖形來推導出它的面積計算公式呢?那么同學們想一想,圓可能轉化為什么平面圖形來計算呢?
2. 推導圓面積的計算公式。
。1)拿出已準備好的學具,說說你把圓剪拼成了什么圖形?
。2)學生小組討論。
看拼成的長方形與圓有什么聯(lián)系?
學生匯報討論結果。
。3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發(fā)現(xiàn)什么?(如果分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。)
。4)你能根據(jù)長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。
生邊答師邊演示課件。
生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長×寬
所以圓的面積=周長的一半×半徑
S=πr × r S=πr2 師小結公式
S=πr2,讓學生小組內說說圓的面積是怎樣推導出來的?
。5)讀公式并理解記憶。
。6)要求圓的面積必須知道什么?(半徑)
3. 利用公式計算。
。1)用新的'方法算一算:剛才的玻璃到底有多大?看誰剛才猜得較接近。(學生計算并匯報)
。2)出示例3,學生嘗試練習,反饋評價。
提問:如果這道題告訴的不是圓的半徑,而是直徑,該怎樣解答?不計算,誰知道結果是多少嗎?
(3)完成第95頁做一做的第1題。
。4)看書質疑。
三、運用新知,解決問題
1. 求下面各圓的面積,只列式不計算。(CAI課件出示)
2. 測量一個圓形實物的直徑,計算它的周長及面積。
3. 課件演示
用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題并計算)(羊吃到草的最大面積即最大圓面積是多少?)
四、全課小結
這節(jié)課你自己運用了什么方法,學到了哪些知識?
五、布置作業(yè)
1. 第97頁的第3題和第4題。
2. 找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物、直徑(厘米)、半徑(厘米)、面積(平方厘米)
板書設計:
圓的面積
長方形的面積= 長× 寬
圓的面積=周長的一半×半徑
S=πr×r
S=πr2
圓的面積教案3
教學目標:
1、學生通過觀察、操作、分析和討論,推導出圓的面積公式。
2、能夠利用公式進行簡單的面積計算。
3、滲透轉化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。
教學重難點:滲透轉化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。
教學過程
一、嘗試轉化,推導公式
1、確定“轉化”的策略。
師:同學們,你們想一想,當我們還不會計算平行四邊形的面積的時候,是利用什么方法推導出了平行四邊形的面積計算公式呢?
引導學生明確:我們是用“割補法”將平行四邊形轉化成長方形的方法推導出了平行四邊形的面積計算公式。
師:同學們再想想,我們又是怎樣推導出三角形的面積計算公式的呢?
師:對了,我們將平行四邊形、三角形“轉化”成其它圖形的方法來推導出它們的面積計算公式。
2、嘗試“轉化”。
師:那么,怎樣才能把圓形轉化為我們已學過的其它圖形呢?(板書課題:圓的面積)
請大家看屏幕(利用課件演示),老師先給大家一點提示。
師:(教師配合課件演示作適當說明)如果我們把一個圓形平均分成16份(如圖三),其中的每一份(如圖四,課件閃爍其中1份)都是這個樣子的。同學們,你們覺得它像一個什么圖形呢?
師:是的,其中的每一份都是一個近似三角形。請同學們再想一想,這個近似三角形這一條邊(教師指示)跟圓形有什么關系呢?
引導學生觀察,明確這個近似三角形的兩條邊其實都是圓的半徑。
師:如果我們用這些近似三角形重新拼組,就可以將這個圓形“轉化”成其它圖形了。同學們,老師為你們每個小組都準備了一個已經(jīng)等分好了的圓形,請你們動手拼一拼,把這個圓形“轉化”成我們已學過的其它圖形,開始吧!
預設:學生利用這種近似三角形拼組圖形會有一定的難度,教師要加強巡視和有針對性的指導,既鼓勵學生拼出自己想象中的圖形,又要引導他們拼出最簡單、最容易計算面積的圖形。一般情況下,學生會拼出如下幾種圖形(如圖五、圖六、圖七)。
3、探究聯(lián)系。
師:同學們,“轉化”完了嗎?好,請大家來展示一下你們“轉化”后的圖形。
預設:
分組逐個展示,并將其中“轉化”成長方形的一組的作品貼在黑板上。如果有小組轉化成了不規(guī)則的圖形,教師應及時引導他們轉化為我們已學過的平面圖形。
師:好,各個小組都不錯。現(xiàn)在請同學們思考一個問題:你們把一個圓形“轉化”成了現(xiàn)在的圖形之后,它們的面積有沒有改變?請小組內討論。
師:誰來告訴大家,它們的面積有沒有改變?
師:是的,沒有改變,就是說:這個近似的長方形的面積=圓的面積。
師:雖然我們現(xiàn)在拼成的是一個近似的長方形,但是如果把圓等分成32份、64份、128份、256份……一直這樣下去分成很多很多份,拼成的圖形就變?yōu)檎嬲拈L方形(課件演示,如圖八)。
4、推導公式。
師:現(xiàn)在我們就來看這個長方形。同學們,如果圓的半徑為r,你們知道這個長方形的長和寬分別是多少嗎?現(xiàn)在請小組為單位進行討論討論。
師:好,同學們,誰能首先告訴老師,這個長方形的寬是多少?
預設:
根據(jù)學生的回答,教師演示課件,同時閃爍圓的半徑和長方形的寬,并標示字母r,如圖九。
師:那這個長方形的長是多少呢?(教師邊演示課件邊說明)這個長方形是由兩個半圓展開后拼成的,請大家看屏幕,這個紅色的`半圓展開后,其中這條黃色的線段就是長方形的長(如圖十),請同學們仔細觀察(課件繼續(xù)演示如圖十一,半圓展開后再還原,再展開,),這個長方形的長究竟與圓的什么有關?究竟是多少呢?
預設:
教師引導學生明白:這個長方形的長與圓的周長有關,并且是圓的周長的一半(如果學生有困難的話,教師利用課件演示,如圖十二)。并且讓學生通過計算得出長方形的長就是πr。
師:現(xiàn)在我們已經(jīng)知道了這個長方形的長和寬(如圖十三),它的面積應該是多少?那圓的面積呢?
預設:
老師根據(jù)學生的回答進行相關的板書。
師:你們真了不起,學會了“轉化”的方法推導出圓的面積計算公式,F(xiàn)在請大家讀一讀,記一記,寫一寫圓的面積計算公式。
二、運用公式,解決問題
1、教學例1。
師:同學們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?(出示例1)如果我們知道一個圓形花壇的直徑是20m,我們該怎樣求它的面積呢?請大家動筆算一算這個圓形花壇的面積吧!
預設:
教師應加強巡視,發(fā)現(xiàn)問題及時指導,并提醒學生注意公式、單位使用是否正確。
2、完成做一做。
師:真不錯!現(xiàn)在請同學們翻開數(shù)學課本第69頁,請大家獨立完成做一做的第1題。
訂正。
3、教學例2。
師:(出示例2)這是一張光盤,這張光盤由內、外兩個圓構成。光盤的銀色部分是一個圓環(huán)。請同學們小聲地讀一讀題。開始!
師:怎樣求這個圓環(huán)的面積呢?大家商量商量,想想辦法吧!
師:找到解決問題的方法了嗎?
師:好的,就按同學們想到的方法算一算這個圓環(huán)的面積吧!
預設:
教師繼續(xù)對學困生加強巡視,如果還有問題的學生并給予指導。
交流,訂正。
三、課堂作業(yè)。
教材第70頁第2、3、4題。
四、課堂小結
師:同學們,通過這節(jié)課的學習,你有什么收獲?
課后作業(yè):完成數(shù)練第31頁。
圓的面積教案4
教學目標:
1.通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2.激發(fā)學生參與整個課堂教學活動的學習興趣,培養(yǎng)學生的分析、觀察和概括能力,發(fā)展學生的空間觀念。
3.滲透轉化的數(shù)學思想和極限思想。
教學重點:
正確計算圓的面積。
教學難點:
圓面積公式的推導。
教具準備:
多媒體課件二套,圓片。
一。情景導入
1、 師:(出示圖)草地上長滿了青草,一只羊被栓在草地的木樁上,請問:它能吃光全部青草嗎?它最多能吃到哪個范圍內的青草?請大家畫出這只羊活動范圍的示意圖,兩位同學到黑板上畫。(一位畫的是周長,另一位畫的是面積。)(動畫演示)
師:這個范圍的大小指圓的周長還是面積?為什么?誰畫的正確,(圓的面積)。
。ò鍟簣A的面積)
2.師:什么是圓的面積?先說,再看書,學生讀,(教師用課件演示)
師:看到這個課題后,你們會想到什么?這堂課要解決什么問題呀?
生:這堂課我們要學習圓的面積是怎樣求出來的。
生:學生圓的面積公式。
師:你們知道圓的面積公式后,你們還想到什么問題?
生:圓的面積公式根據(jù)什么推導出來的。
師:對!剛才這幾位同學跟老師想的一樣。這堂課我們要解決兩個問題。
(通過創(chuàng)設情景,激發(fā)學生的學習興趣,形成良好的學習動機。通過學生提出問題,明確學習目標。)
二、動手操作,探索新知
1. 猜測(每項用課件出示)
師:我們先用一個簡單辦法,猜想一下圓面積的公式。把一個圓4等分,用半徑作邊長畫一個正方形。這個正方形的面積可用r2表示。在這個圓上可以畫同樣的4個正方形,它們的面積可以用4 r2 表示,你們觀察一下這個圓的面積等不等于4 r2 ?
生:不等。
師:為什么?
生:因為,這個圓面積還要加上外面的4小塊,才是4 r2 。
師: 這個圓的面積比4 r2 小,我們再在圓內畫一個最大的正方形,這個正方形的面積怎么求出來?
生:這個正方形是由四個同樣大小的三角形組成,每個面積1/2r2,總面積2r2。
師:圓的面積和正方形比較誰的面積大?
生:圓的面積大
師:可以觀察出圓的面積范圍在2r2-4r2
(這里讓學生了解解決問題時要善于觀察、敢于猜想。滲透無限等數(shù)學思想,)
2. 回憶舊知,
師:圓能不能直接用面積單位支量呢?為什么?
生: 因為圓是由曲線圍成的,用面積單位直接量是有困難的。
師:該怎么辦呢?(教室沉默)
師: 請同學們看屏幕,(師播放課件)邊看邊回憶:以前我們研究過平行四邊形、三角形和梯形面積的求法,那時我們是怎樣處理的?(用投影機放出幾種圖形的轉化圖解,邊出示,邊討論)
師:這些圖形面積公式的推導方法對我們研究圓的面積有什么啟示呢?
生:我們可以用圖形轉化的方法,求圓的面積。(把未知的轉化為已知的)
師:這個辦法很好。那么把圓形轉化成什么圖形呢?
[評:啟發(fā)學生運用轉化的數(shù)學思想解決問題。這種設計既復習了舊知識,又為學生新知識作好鋪墊,能夠促進學生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結構。]
3.動手操作
(1)師:請同學們動手剪拼一下,看到底能拼成什么圖形。(學生動手操作。)
師:誰能向大家匯報一下,你把圓拼成了什么圖形?(生答:拼成了。請把你拼好的圖形放在實物投影上展示給大家看。一個同學用8等份的圓片擺成近似平行四邊形,一個用不著16等份的圓片擺成近似長方形)
。2)師::請看大屏幕,16等份的和8等份誰拼成更接近長方形?
生:16等份拼成的圖形就會越接近于長方形。如果分的份數(shù)越多,每一份就會越細,)
師:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長邊就越接近直線,這個圖形就越接近于長方形。課件演示
。3)看拼成的長方形與圓有什么聯(lián)系?你能根據(jù)長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。 (教師要求學生觀察自己在課桌上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)
學生匯報討論結果。生答師繼續(xù)演示課件。
生答:能,因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長寬
所以圓的面積=周長的一半半徑
S=r
S=r2
師:結合公式S=r2,說說圓的面積是怎樣推導出來的?
(4)師:這個面積公式是不是正確,我們可以通過其它圖形來驗證一下。有的'同學把圓拼成了三角形我們用三角形來驗證一下,你能根據(jù)三角形計算公式推導圓的面積計算公式嗎?(課件演示)
生答:三角形的底相當于圓周長的,高相當于圓半徑的4倍。
因為 三角形的面積=底高2
所以 圓的面積=周長的半徑的4倍
S=4r2
S=r2
師:我們用三角形也推出了圓的面積公式 S=r2 。同學們還有其它圖形來驗證嗎?
。5)生:我們把圓轉化成梯形來驗證。(課件演示)
生:梯形的上底與下底的和相當于圓周長的一半,高相當于半徑的2倍。
因為梯形的面積=(上底+下底)高2
所以圓的面積=周長的一半半徑的2倍
S=2r2
S=r2 用梯形的面積
3.小結:剛才你們把圓轉化成為哪些圖形,分別推導出圓的面積計算公式?(S=r2)
我們根據(jù)拼成的近似平行四邊形、長方形、三角形、梯形都推導出了同樣的公式:S圓=r2。
唉!我們剛才猜的圓面積是多少?你們真了不起!與r2很接近!
圓的面積必需要具備哪些條件?
[評:打破了過去教師演示教具學生看的框框,而是要求每個學生動手操作,并滲透轉化、無限等數(shù)學思想,讓學生自己從嘗試中推導圓面積的公式。]
。ㄈ┱n后鞏固
1、 現(xiàn)在你可以求出小羊大約最多能吃到多少面積的青草嗎?為什么?請你給它補個條件。
(照應了開頭,又學練習了面積的計算。)
2、 根據(jù)下面條件求出圓的面積
r =5分米 d =3米
3同學們怎么計算樹的橫截面的面積,是不是一定把樹木鋸斷?(同學們討論答出測出周長后師再出題)樹的周長是非曲直18.84平方米,求樹的橫截面的面積?
。ㄓ脤W到的知識來解決生活中的問題,培養(yǎng)學生的應用能力)
(四)師:這堂課大家學到了什么?有什么收獲?
。▽W生熱烈發(fā)言,最后教師總結,解答了課一開始提出的兩個問題。)
[評:課堂小結時間雖短,但能使學生認識升華一步,同時做到前后呼應,使整堂課結構嚴謹,層次清楚。這堂課最大的特點,是能充分調動學生的主動性和積極性,學生既學得生動活潑,又能充分發(fā)展思維。]
圓的面積教案5
【圖解教材】
利用光盤幫助學生理解求圓環(huán)的面積是利用外圓的面積減去內圓面積。
【課時目標】
1、學會已知圓的周長求圓的面積的解題思路與方法,理解并學會環(huán)形面積。
2、培養(yǎng)學生靈活、綜合運用知識的能力,運用所學的知識解決簡單的實際問題。
3、培養(yǎng)學生的邏輯思維能力。
【教學重點】求圓環(huán)的面積的'方法。
【教學難點】運用所學知識解決實際問題。
【教學過程】
一、復習
1、口算:
32 42 52 82 92 202
2π 3π 6π 10π 7π 5π
2、思考:
。1)圓的周長和面積分別怎樣計算?二者有何區(qū)別?
。2)求圓的面積需要知道什么條件?
。3)知道圓的周長能夠求它的面積嗎?
二、新課
1、教學練習十六第3題
小剛量得一棵樹干的周長是125.6cm,這棵樹干的橫截面積是多少?
已知:c=125.6厘米 s=πr2
r:125.6÷(2×3.14) 3.14×202
=125.6÷6.28 =3.14×400
=20(厘米) =1256(平方厘米)
答: 這棵樹干的橫截面積1256平方厘米。
3、教學環(huán)形面積。
。1)例2 光盤的銀色部分是個圓環(huán),內圓半徑是2cm,外圓半徑是6cm。它的面積是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.14×62 3.14×22
=3.14×36 =3.14×4
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二種解法:3.14×(62-22)=100.48(平方厘米)
(2)小結:環(huán)形的面積計算公式:
S=πR2-πr2 或 S=π×(R2-r2)
。3)完成做一做: 一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
三、課堂小結;
四、板書設計:
【評價方案】
一、達標測評
●學校有個圓形花壇,周長是18.84米,花壇的面積是多少?
選擇正確算式
A、(18.84÷3.14÷2)2×3.14
B、(18.84÷3.14)2×3.14
C、18.842×3.14
●環(huán)形鐵片,外圈直徑20分米,內圓半徑7分米,環(huán)形鐵片的面積是多少?
●課堂小結。
。1)這節(jié)課的學習內容是什么?
。2)求圓的面積時題中給出的已知條件有幾種情況?怎樣求出圓面積?
已知半徑求面積 S=πr2
已知直徑求面積 S=π()2
已知周長求面積 S=π()2
(3)環(huán)形面積: S=π(R2-r2)
二、效度評價
參評人數(shù)( )
題號
1
2
3
答對人數(shù)
正確率
三、教學反思
學生參與程度
教學目標達成度
經(jīng)驗積累
問題分析
改進措施
圓的面積教案6
教學目標
1、經(jīng)歷圓面積計算公式的推導過程,掌握圓的面積計算公式。
2、能正確運用圓面積的計算公式計算圓的面積。
3、在探究圓面積的計算公式過程中,體會轉化的數(shù)學思想方法;初步感受極限的思想。
教學重難點及學具準備
教學重點和難點:圓面積的計算公式推導。
教學準備:圓形紙片、剪刀、多媒體課件等。
教學過程
課前談話:
聊一聊《曹沖稱象》的故事。
(設計意圖:放松學生的緊張心情,為課堂教學做好了心理準備;另一方面,用《曹沖稱象》的故事,喚起學生已有的經(jīng)驗。設計“怎么不直接稱大象的重量?”這一關鍵問題,抓住學生回答中的“用石頭代替大象”“石頭的重量和大象的重量相等”等要點,把學生經(jīng)驗中的“轉化”思想激活,為新課的教學做好思想方法上的準備。)
教學過程:
一、開門見山,揭示課題
(出示一個圓)大家看,這是什么圖形?
我們已經(jīng)認識了圓,學習了圓的周長,這節(jié)課我們一起來學習圓的面積。(板書課題:圓的面積)
(設計題圖:采用開門見山的的引入方式,這樣設計簡潔明快,結構緊湊,能保證把過程性目標落實到位。)
二、第一次探究,明確思路,體會“轉化”的數(shù)學思想方法
請你想一想,什么是圓的'面積呢?
圓所占平面的大小就是圓的面積。那怎么求圓的面積呢?
圓能不能轉化成我們學過的圖形呢?我們可以試一試。請大家利用手中的圓紙片和準備的工具在小組內研究研究。
(設計意圖:在學生迷茫時指明了思考的方向和方法,又讓學生把“圓”這個看似特殊的圖形(用曲線圍成的圖形)與以前學過的圖形(用直線段圍成的圖形)有機地聯(lián)系起來,溝通知識之間的聯(lián)系,促成遷移。)
怎樣讓扇形和三角形的面積接近一些?
現(xiàn)在,有兩種思路,一種是把圓折一折想轉化成三角形,還有一種是想通過剪拼把圓轉化成平行四邊形,你們發(fā)現(xiàn)這兩種方法的共同點了嗎?
把圓這個新圖形轉化成已經(jīng)學過的圖形求出面積。
(設計意圖:“你們發(fā)現(xiàn)這兩種方法的共同點了嗎?”這一關鍵問題,旨在引導學生通過回顧反思,達到滲透“轉化”這一數(shù)學思想方法的目的。)
三、第二次探究,明確方法,體驗“極限思想”
我發(fā)現(xiàn)一個問題,不管是折成的三角形,還是剪拼成的平行四邊形都不是很像,怎么才能更像呢,這就是下面要研究的問題。請每個小組在兩種思路中選擇一種繼續(xù)研究。
為什么要折這么多份?
把圓分的份數(shù)越多,其中的一份越接近三角形。三角形的底可以看成這段弧,三角形的高可以看成是圓的半徑。你們會求三角形的面積嗎?三角形的面積會求了,能求出圓的面積嗎?
把圓剪成更多份,能讓拼成的圖形更接近平行四邊形。
(設計意圖:讓學生真切地看到“自己想象的過程”,充分地體驗“極限思想”。)
四、第三次探究,深化思維,推導公式
剛才同學們借助學具通過動手操作,都找到解決問題的方法了。一種是把圓轉化成長方形求出面積;一種是把圓轉化成三角形,得到圓的面積?墒菙(shù)學學習不僅需要動手操作,更需要借助數(shù)字、字母和符號等進行動腦思考和推理,F(xiàn)在,老師想給大家提個更高的要求:每個小組能不能還利用剛才選擇的方法,推導出圓的面積計算公式呢?
(設計意圖:在第二次探究中,學生主要是借助學具進行動手操作,明晰求圓的面積的方法。操作對于小學生學習數(shù)學是必不可少的手段和方法,但數(shù)學思維的特點是要進行邏輯思考和推理。
第三次探究結果的交流,教師有意識地先讓學生交流將圓轉化成長方形求出圓的面積公式的方法,因為這種方法學生理解起來比較容易,是要求每個學生都要掌握的方法。)
五、解決問題
1、現(xiàn)在你能求出黑板上這個圓形紙片的面積了吧?需要什么條件?這個圓的半徑是10厘米,面積是多少呢?請大家做在練習本上。(請一名學生到黑板上板演。)
(教師組織交流。)
2、知道圓的半徑可以求出圓的面積,那么,知道直徑和周長能不能求出圓的面積呢?教師出示直徑為6分米的圓和周長為12.56厘米的圓,學生思考后說出求面積的方法,即要求圓的面積必須先根據(jù)直徑或周長求出圓的半徑。
(設計意圖:因為本節(jié)課的主要目標是引導學生去經(jīng)歷探究圓的面積公式的過程,充分體驗“轉化”和“極限思想”,而有關求圓的面積的變式練習,以及利用圓的面積公式解決實際問題的練習都安排在下一節(jié)課中。因此,這節(jié)課只設計了幾個基本練習,目的是檢驗學生對圓的面積的理解和掌握程度。)
六、小結
圓的面積教案7
教學目標:
1、使學生經(jīng)歷操作、觀察、驗證和討論歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題。
2、使學生進一步體會“轉化”方法的價值,培養(yǎng)運用已學知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。
3、體會數(shù)學來自于生活實際的需要,感受數(shù)學與生活的聯(lián)系,進一步產(chǎn)生對數(shù)學的好奇心和興趣。
教學重點:
探索并掌握圓的面積公式,能正確計算圓的面積。
教學難點:
理解圓的面積公式的推導過程。
教學準備:
圓的面積公式的推導圖。
一、回顧舊知,引入新知
1、師:四年級時,我們學習了求長方形和正方形的面積的方法,誰來說一說它們的面積的計算方法。
學生回答,教師予以肯定。
2、提問:圓的周長怎么計算?已知圓的周長,如何計算它的直徑或半徑?
3、引入:我們已經(jīng)研究了圓的周長和直徑、半徑的計算方法,今天這節(jié)課我們來研究圓的面積是如何計算的。
。ò鍟簣A的面積)
設計意圖通過復習,促進學生對周長和已知周長求直徑或半徑的理解,喚起學生求長方形和正方形面積的經(jīng)驗,為新課的學習做好準備。
二、合作交流,探究新知
1、教學例7。
(l)初步猜想:圓的面積可能與什么有關?說說你猜想的依據(jù)。
。2)圓的面積和半徑或直徑究竟有著怎樣的關系呢?我們可以做一個實驗。
。3)出示例7第一幅圖。思考:圖中正方形的邊長與圓的半徑有什么關系?圖中正方形的面積和圓的半徑有什么關系?
。4)學生獨立完成填空。
。5)猜測:圓的面積大約是正方形面積的幾倍?
學生回笞后,明確:圓的面積小于正方形面積的4倍,有可能是3倍多一些。
。6)出示例7后兩幅圖,按照同樣的方法進行計算并填表。
正方形的面積/
圓的半徑/
圓的面積/
圓面積大約是正方形面積的幾倍
(精確到十分位)
2、交流歸納:觀察上面的表格,你有什么發(fā)現(xiàn)?
通過交流,明確
。1)圓的面積是它的半徑平方的3倍多一些。
。2)圓的面積可能是半徑平方的兀倍。
3、教學例8。
。╨)談話:經(jīng)過剛才的學習,我們已經(jīng)知道圓的面積大約是它半徑平方的3倍多一些,那么圓的面積究竟應該怎樣來計算呢?
。2)操作體驗:教師演示把圓平均分成16份,并拼成一個近似的平行四邊形。
。3)提問:拼成的圖形像什么圖形?追問:為什么說它像一個平行四邊形?
初步想象:如果把圓平均分成32份,也用類似的方法拼一拼,想一想,拼成的圖形與前面的圖形相比有怎樣的變化?
。4)進一步想象:如果將圓平均分成64份、128份,也用類似的方法拼一拼。閉上眼睛想一想,隨著份數(shù)的增加,拼成的圖形會越來越接近一個什么圖形?
。5)交流后,教師出示推導圖。拼成的'長方形與原來的圓有什么聯(lián)系?在小組中討論交流。
。6)在集體交流中借助圖示小結:長方形的面積與圓的面積相等;長方形的寬是圓的半徑;長方形的長是圓周長的一半。
。7)追問:如果圓的半徑是r,長方形的長和寬應該怎樣表示?根據(jù)長方形面積的計算方法,怎樣來計算圓的面積?
。8)根據(jù)學生的回答,教師板書
長方形的面積一長×寬
圓的面積=
。9)追問:有了這樣一個公式,知道圓的什么條件,就可以計算圓的面積了?
4、教學例9。
。1)出示例9,提問:有沒有在生活中見過自動旋轉X器?
(2)想象一下自動X器旋轉一周后噴灌的地方是什么圖形,X的最遠的距離是什么意思。
(3)學生獨立完成計算。
。4)集體交流。
5、教學例10。
。1)請同學讀題,解讀題意。
(2)找出題中的已知條件。
。3)分析解題過程。
。4)明確各個量之間的轉化關系。
三、鞏固練習,加深理解
1、完成“練一練”。
(1)學生獨立解答。
(2)集體交流。
2、完成練習十五第1題。
。╨)學生獨立解答。
。2)集體交流。
3、完成練習十五第3題。
。1)學生列式后用計算器計算。
(2)集體交流。
4、完成練習十五第4題。
。1)學生獨立解答。
。2)集體交流,指出:已知周長求面積,先要根據(jù)周長求出半徑。
5、作業(yè):練習十五第2、5題。
四、課堂小結
師:通過今天的學習,你有什么收獲?
學生發(fā)言,教師點評。
圓的面積
長方形的面積=長×寬
圓的面積
圓的面積教案8
教學目標:
1、使學生學會已知圓的周長求圓的面積的解題思路與方法,理解并學會環(huán)形面積。
2、培養(yǎng)學生靈活、綜合運用知識的能力,運用所學的知識解決簡單的實際問題。
3、培養(yǎng)學生的邏輯思維能力。
教學重點:培養(yǎng)綜合運用知識的能力。
教學難點:培養(yǎng)綜合運用知識的能力。
教學過程:
一、復習。
1、口算:
3242528292202
267
2、思考:
。1)圓的周長和面積分別怎樣計算?二者有何區(qū)別?
(2)求圓的面積需要知道什么條件?
。3)知道圓的周長能夠求它的面積嗎?
二、新課。
1、教學練習十六第3題
小剛量得一棵樹干的周長是125.6cm,這棵樹干的橫截面積是多少?
已知:c=125.6厘米s=r2
r:125.6(23.14)3.14202
=125.66.28=3.14400
=20(厘米)=1256(平方厘米)
答:這棵樹干的橫截面積1256平方厘米。
3、教學環(huán)形面積。
。1)例2光盤的銀色部分是個圓環(huán),內圓半徑是2cm,外圓半徑是6cm。它的面積是多少?
已知:R=6厘米r=2厘米求:s=?
3.14623.1422
=3.1436=3.144
=113.04(平方厘米)=12.56(平方厘米)
113.04-12.56=100.48(平方厘米)
第二種解法:3.14(62-22)=100.48(平方厘米)
。2)小結:環(huán)形的面積計算公式:
S=R2-r2或S=(R2-r2)
(3)完成做一做:一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
三、鞏固練習。
1、學校有個圓形花壇,周長是18.84米,花壇的面積是多少?
選擇正確算式
A、(18.843.142)23.14
B、(18.843.14)23.14
C、18.8423.14
2、環(huán)形鐵片,外圈直徑20分米,內圓半徑7分米,環(huán)形鐵片的`面積是多少?
3、課堂小結。
。1)這節(jié)課的學習內容是什么?
。2)求圓的面積時題中給出的已知條件有幾種情況?怎樣求出圓面積?
已知半徑求面積S=r2
已知直徑求面積S=()2
已知周長求面積S=()2
(3)環(huán)形面積:S=(R2-r2)
四、作業(yè)
課本P70第4、6、7題。
教學追記:
本堂課,在我?guī)ьI著學生利用教具進行操作,在此基礎上,讓學生自主發(fā)現(xiàn)圓的面積與拼成長方形面積的關系,圓的周長、半徑和長方形的長、寬的關系,并推導出圓的面積計算公式。教學環(huán)形的面積計算時,我充分放手給學生,讓學生通過思考討論領悟出求環(huán)形的面積是用外圓面積減去內圓面積,并引導他們發(fā)現(xiàn)這兩種算法的一致性,同時提醒學生盡量使用簡便算法,減少計算量。
圓的面積教案9
教學內容:小學數(shù)學義務教育教材第十一冊p129---p130
教學目的:
1、通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2、激發(fā)學生參與整個課堂教學活動的學習興趣,培養(yǎng)學生的分析、觀察和概括力,發(fā)展學生的空間觀念。
3、滲透轉化的數(shù)學思想和極限思想。
教學重點:圓面積公式的推導。
教學難點:弄清圓與轉化后的近似圖形之間的關系。
學具:每四人小組一個彩色圓(教師分好8等分點)、兩三個圓、固體膠、卡紙、剪刀。
教具:課件。
教學過程:
一、談話揭題:
出示圖:
你看到了什么?剛才同學們提到的圓的面積就是今天這節(jié)課我們要來研究的內容。(出示課題:圓的面積)那么圓的面積和什么有關?(半徑、直徑)
二、新課教學:
1、猜測:
現(xiàn)在請大家看,這兒有一張正方形的紙,(課件演示)用它剪一個最大的圓,(課件演示)如果圓的半徑用r來表示,你知道原來正方形的面積怎么求嗎?(2rx2r)整理一下(板書:2rx2r=4r的平方)(按虛線)我們再來看看圖,你明白了什么?這樣看來,正方形的面積是r的平方的4倍,那么,現(xiàn)在請你猜猜看,圓的面積大概會是多少?
2、驗證:
(1)現(xiàn)在我們都認為圓的面積是r的平方的三倍多一點,那么,圓的面積與r的平方到底有怎樣的關系呢?你們準備用怎樣的方法來研究它呢?下面請四人小組討論一下,可以動用桌子上的學具。(教師巡視)
。2)反饋:(三分鐘后,低到高)
a:你們?yōu)槭裁床粍樱磕銈冇质窃趺聪氲??(平均分成若干份,拼成我們學過的圖形來研究)同意嗎?
b:這兒有一個圓,我們把它平均分成四份,可以嗎?那么怎么拼呢?(學生拼,投影演示)看看象什么圖形?(平行四邊形)象嗎?我看不象。怎樣使它象呢?(分的份數(shù)多一點)剛才我們拼的圖形象平行四邊形,當然,可能還能拼成別的圖形。
c:剛才我們討論研究出來的方法第一步是等分,第二步是想一想拼成什么圖形,再拼一拼,第三步是推導。(板書:等分想、拼推導)當然,也可以用別的方法。(板書箭頭)
。3)操作:
你們想試一試嗎?現(xiàn)在請組長拿出信封,倒出里面的圓片,我們以四人小組為單位動動手。(小組討論操作,師巡回指導:表揚拼出與別組不一樣圖形的小組,提示拼好后可以用膠水粘住。)
3、小組匯報:(舉起把圓等分成8份、16份所拼成的長方形或平行四邊形給學生看一看,再請平均分成16份拼成長方形或平行四邊形的同學匯報)
。1)學生匯報。
(2)有沒有疑問?
拼成的長方形是真正的長方形嗎?為什么?(邊是曲線)
如果把一個圓等分成32份,拼成的長方形會怎樣呢?(課件演示)等分成64份,又會怎么樣呢?(課件演示)如果等分的份數(shù)更多,又會怎樣呢?你能得出什么結論?(圓等分的份數(shù)越多,拼成的圖形越接近于長方形)
(3)板書:
那么長方形的面積是怎么求的?(板書)它的長相當于圓的什么?怎么用字母表示?寬呢?(課件演示:在長方形或平行四邊形64等分圖的下面出示r,右邊出示r,同時板書)那么圓的面積=rxr=r的平方。
。4)還有補充嗎?
小組匯報:平行四邊形、三角形、梯形面積轉化為圓的面積公式。(實物投影儀下顯示,最后寫成r的平方,14bd的平方)
4、小結:通過剛才我們四人小組的活動,大家有什么結論?(不管拼成什么圖形,都能推導出圓的面積是r的平方)那么知道什么可以求出圓的面積?(半徑、直徑、周長)
三、鞏固練習:
1、出示:課本p1302(1)(3)(課件演示)會嗎?(草稿本上算,投影反饋)
2、現(xiàn)在來看這個圖形(猜測題)如果r=5厘米,你能求什么?(圓面積、正方形的面積、剩下的紙的面積)請你草稿本上算一算。(投影反饋)或口答。
四、機動練習:
教師準備一些實物,分發(fā)給四人小組:你們能求出它們的面積嗎?(反饋)還可以測什么數(shù)據(jù)算面積?
五、全課小結:
今天這節(jié)課給你印象最深刻的一點是什么?
圓的面積教案10
教學內容分析:
圓的面積是學生認識了圓的特征、學會計算圓的周長以及學習過直線圍成的平面圖形面積計算公式的基礎上進行教學的。由于以前所學圖形的面積計算都是直線圖形面積的計算,而像圓這樣的曲邊圖形的面積計算,學生還是第一次接觸到,所以具有一定的難度和挑戰(zhàn)性。教學關鍵之處在于學生通過觀察猜想、動手操作、計算驗證,自主探索、推導出圓的面積公式并能靈活應用圓的面積公式解決實際問題。因此本課的教學應緊緊圍繞“轉化”思想,引導學生聯(lián)系已學知識把新知識納入已有知識中分析、研究、歸納,從而完成對新知的建構過程,建立數(shù)學模型,培養(yǎng)解決問題的綜合能力。
學生情況分析:
小學對幾何圖形的認識很大程度屬于直觀幾何的學習階段,而幾何本身比較抽象的。本節(jié)內容學生從認識直線圖形發(fā)展到認識曲線圖形,又是一次飛躍,但從學生思維角度看,五年級學生具有一定的抽象和邏輯思維能力。這一學段中的學生已經(jīng)有了許多機會接觸到數(shù)與計算、空間圖形等較豐富的數(shù)學內容,已經(jīng)具備了初步的歸納、類比和推理的數(shù)學活動經(jīng)驗,并具有了轉化的數(shù)學思想。所以在教學應注意聯(lián)系現(xiàn)實生活,組織學生利用學具開展探索性的數(shù)學活動,注重知識發(fā)現(xiàn)和探索過程,使學生感悟轉化、極限等數(shù)學思想,從中獲得數(shù)學學習的積極情感,體驗和感受數(shù)學的力量。同時在學習活動中,要使學生學會自主學習和小組合作,培養(yǎng)學生解決數(shù)學問題的能力。
教學目標:
1、讓學生經(jīng)歷操作、觀察、填表、驗證、討論和歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數(shù)學模型。
2、讓學生進一步體會“轉化”的數(shù)學思想方法,感悟極限思想的價值,培養(yǎng)運用已有知識解決新問題的能力,增強空間觀念,發(fā)展數(shù)學思考。
3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高學習數(shù)學的興趣。
教學重難點:
重點:圓的面積計算公式的推導和應用。
難點:圓的面積推導過程中,極限思想(化曲為直)的理解。
教學準備:
教具:多媒體課件、面積轉化教具。
學具:書、計算器、16等份教具、作業(yè)紙。
教學過程:
一、創(chuàng)設情境、揭示課題
1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?
(復習圓的相關特征)
師:那馬最多能吃多大面積的草呢?
師:圓所圍成的平面的大小就叫做圓的面積。
師:今天我們繼續(xù)來研究圓的面積。(揭示課題)
2、師:你想研究它的哪些問題呢?(引導學生提出疑問)
【設計意圖:在教學過程的.伊始就用這個生活中的數(shù)學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數(shù)學問題,讓學生體驗到數(shù)學來源于生活!
二、猜想驗證、初步感知
1、實驗驗證
。1)師:猜一猜,圓的面積可能會和它的什么有關系?
師:你覺得圓的面積大約是正方形的幾倍?
(2)師:對我們的估計需要進行?
生:驗證。
師:用什么方法驗證呢?
師:下面請大家先數(shù)數(shù)圓的面積是多少。
師:數(shù)起來感覺怎么樣?有沒有更簡潔一點的方法?
。ㄒ龑W生發(fā)現(xiàn)可以先數(shù)出 個圓的方格數(shù),再乘4就是圓的面積)
。ㄗ寣W生在圖1中數(shù)一數(shù),用計算器算一算,填寫表格里的第1行。)
圓的半徑
。╟m)
圓的面積
(cm2)
圓的面積
。╟m2)
正方形的面積
。╟m2)
圓的面積大約是正方形面積的幾倍
。ň_到十分位)
。3)師:只用一個圓,還不足以驗證猜想,作業(yè)紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)
。▽W生完成后交流匯報。)
師:仔細觀察表中的數(shù)據(jù),你有什么發(fā)現(xiàn)?
生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的3倍多一些。
3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?
生:圓的面積是它半徑平方的3倍多一些。
小結:我們經(jīng)過猜測——數(shù)方格——驗證,最終發(fā)現(xiàn)圓的面積是正方形面積也就是它半徑平方的3倍多一些。
【設計意圖:從學生熟悉的數(shù)方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經(jīng)驗,從而為進一步探索圓的面積公式作好準備。由數(shù)方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性!
三、實驗操作、推導公式
1、感受轉化,滲透方法
。ㄕn件再次出示馬吃草圖)
師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?
。ㄒ龑W生發(fā)現(xiàn),3倍多一些到底多多少還不清楚,需要繼續(xù)研究能準確計算圓面積的方法。)
2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?
。▽W生回憶后匯報,教師演示,激活轉化思路)
3、第一輪探究——明確思路,體會轉化
師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?
生:剪圓。
師:怎么剪呢?沿著什么剪?
生:沿著直徑或半徑剪開。
。ǚ謩e演示2等份、4等份、8等份,引導學生發(fā)現(xiàn)邊越來越直,剪拼的圖形越來越平行四邊形)
4、第二輪探究——明確方法,體驗極限
師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?
生:想把圓形轉化成平行四邊形。
師:那還能更像嗎?
生:可以將圓片平均分成16份。
。ㄒ龑W生把16、32等份的圓拼成近似的長方形,上臺展示)
師:從哪兒可以看出這兩幅圖更接平行四邊形了?
生:邊更直了。
師:是什么方法使得邊越來越直了?
生:平均分的份數(shù)越來越多。
。ㄒ龑W生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)
師:如果我們平均分的份數(shù)足夠多,就化曲為直,最后拼成的圖形——就成長方形了。
【設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發(fā)現(xiàn)它的計算方法了。讓學生迅速回憶,調動原有的知識,為新知識的“再創(chuàng)造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數(shù)愈多,拼成的圖形就越接平行四邊形。在想象的過程中蘊含了另一個重要數(shù)學思想的滲透——極限思想!
。2)師:我們把圓轉化成了長方形,什么變了,什么沒變?
生:形狀變了,面積大小沒有變。
師:這樣就把圓的面積轉化成了?
生:長方形的面積。
師:要求圓的面積,只要求出?
生:長方形的面積。
5、第3輪探究——深化思維,推導公式
師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯(lián)系?將發(fā)現(xiàn)填寫在作業(yè)紙第2題中,然后小組內交流一下。
(小組討論,發(fā)現(xiàn):長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)
師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)
。ㄍㄟ^長方形面積計算方法,引出圓的面積計算方法)
師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?
生:π倍。
師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。
生:半徑。
5、做“練一練”
完成作業(yè)紙第3題,交流反饋。
6、(課件再次出示牛吃草圖)
師:這匹馬最多能吃多大面積的草,現(xiàn)在會求了嗎?
【設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經(jīng)驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經(jīng)歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養(yǎng)學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數(shù)形結合的內在美,品嘗到成功的喜悅!
四、解決問題、拓展應用
1、師:在日常生活中,經(jīng)常會遇到與圓面積計算有關的實際問題。
。ㄕn件出示例9)
分析題意后學生獨立完成書本第105頁例9。
(組織交流,評價反饋)
2、完成作業(yè)紙第4題
師:接著看,默讀題目,完成作業(yè)紙第3題。
。▽W生獨立完成,交流反饋)
五、全課小結、回顧反思
師:你們對于圓面積的疑問現(xiàn)在解開了嗎?又有了哪些新的收獲?
師:同學們,猜想驗證、操作發(fā)現(xiàn)是我們在數(shù)學學習中探索未知領域時經(jīng)常要用到的方法,用好它相信同學們會有更多的發(fā)現(xiàn)!
【設計意圖:全課總結不僅要重視學習結果的回顧再現(xiàn),也要關注學習經(jīng)驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法。】
板書設計:
圓的面積
轉化
新的圖形學過的圖形
演示圖
長方形的面積=長×寬
圓的面積=圓周長的一半 × 半徑
S=πr×r
=πr2
。1)3.14×22(2)8÷2=4(cm)
。3.14×43.14×42
。12.56(cm2)=3.14×16
=50.24(cm2)
圓的面積教案11
學材分析
教學重點:
面積計算公式的正確運用。
教學難點:
面積公式的推導過程。
學情分析
學生對圓面積公式的推導過程理解有一定的難度。
學習目標
1.理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
2.會用圓面積的計算公式,正確計算圓的面積。
導學策略
導練法、遷移法、例證法
教學準備
圓的面積模型、圓規(guī)、投影儀、投影片
教師活動
學生活動
一.引入
1.什么叫做圓面積?
2.出示大小略有不同的兩個圓,讓學生比較哪個圓的面積大?大多少?(學生口答后把兩圓重疊,比較大小。)相差多少呢?
3.引出課題。
二.推導
1.問:小正方形面積怎樣計算?(半徑半徑)圓面積與小正方形面積的3倍誰大誰?圓面積與小正方形面積的4倍呢?2倍呢?
2.師生共同操作:拿出一張正方形紙,按要求對折4次(注意第4次折的折法,是按角對分地折),然后拿尺量出一等腰三角形剪一刀,展開,得到一個近似于圓的紙片。
3.教師操作:拿一張正方形紙,對折5次,剪一刀展開。與前一次剪的作比較,使學生知道,隨著折的.次數(shù)不斷增加,剪下的圖形也就越接近圓。
4.分析推導。師生共同拿出剪好的圖形分析:這個圖形等分成若干塊,每一塊都是什么形狀?(等腰三角形)這個圖形的面積怎么求?隨著折的次數(shù)不斷增加,剪下的圖形的面積也就越接近什么圖形的面積?
板書:圖形面積=等腰三角形面積n=底高2n=Cr2n
=2rn
圓的面積=r2
邊板書邊提問:等腰三角形的底是多少?(C)等腰三角形的高相當于圓的什么?(半徑r)
5.在上面推導的基礎上,讓學生分4人小組動手把準備的圓分成相等的16個小扇形,再拼成其他圖形,推導出圓面積公式。教師巡視,取學生拼成的各式各樣的圖形,貼在黑板上,選其中兩個進行分析。
三.鞏固
試一試。
四.總結
五.作業(yè)
學生口答
師生共同操作
師生共同操作
教學反思
已經(jīng)是第2次教畢業(yè)班了記得第1次教的時候,還是幼兒園的院長一早每天都要過去一下,課前準備就不夠充分,上課就照本宣科。而現(xiàn)在教這個知識的時候,不僅教具演示而且學生實際操作,所以教學效果就好多了,可以說連中下生都能靈活應用這個知識。
圓的面積教案12
教材分析:
初步認識了圓,學習了圓的周長,以及學過幾種常見直線幾何圖形面積的基礎上進行教學的。學生從學習直線圖形的面積,到學習曲線圖形的面積,不論是內容本身還是研究方法,都是一次質的飛躍。學生掌握了圓面積的計算,不僅能解決簡單的實際問題,也為以后學習圓柱、圓錐的知識打下基礎。
學情分析:
學生已經(jīng)有了平面幾何圖形的經(jīng)驗,知道運用轉化的思想研究新的圖形的面積,在學習中要鼓勵學生大膽想象、勇于實踐。在操作中將圓轉化成已學過的平面圖形,從中找到圓的面積與半徑、直徑的關系。
教學目標:
1、通過操作、觀察,引導學生推導出圓面積的計算公式,并能解決一些簡單的實際問題。
2、培養(yǎng)學生觀察、分析、推理和概括的能力,發(fā)展學生的空間觀念,并滲透極限、轉化的數(shù)學思想。
3、通過小組合作交流,培養(yǎng)學生的合作精神和創(chuàng)新意識,提高動手實踐和數(shù)學交流的能力,體驗數(shù)學探究的樂趣和成功。
4、在圓面積計算公式的推導過程中,運用轉化的思考方法,通過讓學生觀察曲與直的轉化,向學生滲透極限的思想,使學生受到辯證唯物主義觀點的啟蒙教育。
教學重點:
通過觀察操作,推導出圓面積公式及其應用。
教學難點:
極限思想的滲透與圓面積公式的推導過程。
教學過程:備注:
活動一:創(chuàng)設情景,提出問題
1、課件出示羊吃草的動畫:一個放羊娃將一只小山羊用一根繩子把它拴在木樁上。請問小山羊最多能吃到多大范圍的草呢?
2、圓的面積--含義:圓所占平面的大小叫做圓的面積。
3、如果將繩子加長一點,又會出現(xiàn)什么情況?產(chǎn)生這種變化的原因是什么?這說明了什么?
活動二:猜想比較
出示圖
師:看了這兩幅圖形,你發(fā)現(xiàn)了什么?右圖小正方形的面積是多少?左圖大正方形的`面積是多少?你能猜一猜圓的面積和大正方形面積有什么聯(lián)系嗎?
活動三:自主探究,驗證猜想
1、引導轉化:
師:回憶以前學過的平面圖形,它們的面積公式是什么?分別怎么推導出來的?
以上這些圖形都是通過剪拼,轉化成已學過的圖形,再進行推導。那么圓是否也可以把它剪拼轉化成為熟悉的平面圖形呢?
2、動手操作:
。1)分小組動手操作,把圓剪拼轉化成其他圖形,看誰拼得好,拼出的圖形多。
操作引導:A、剪--怎樣剪?剪成幾份?B、拼--怎樣拼?拼成什么?
(2)展示交流并介紹,選出最合理的剪法。
。3)拼成后的近似長方形和標準長方形比較,你發(fā)現(xiàn)了什么?能不能把邊再變得直一點?
想象一下,平均分成64份、128份、256份。.。.。.會是什么情形?(課件演示)
(4)小結:平均分的份數(shù)越多,邊越直,拼成的圖形越接近于長方形。
3、自主推導
。1)小組合作,選擇喜歡的1~2個圖形,嘗試推導公式。
。2)學生展示、介紹自己的推導過程
(3)教師板演圓面積的推導過程
4、情景延續(xù):
(1)如果繩長為5米,計算圓的面積和周長。
。2)將繩子加長為原來的2倍,那么羊能吃到草的面積也是原來的2倍。對嗎?
5、小結:同學們通過大膽猜想和動手驗證,終于得到了圓面積的計算公式,你們真了不起!那么,求圓的面積需要什么條件呢?(是否只有知道半徑才能求圓的面積?)
活動四:實踐運用,體驗生活
1、量出自己帶來的圓形物體的直徑,并計算出面積。
2、社區(qū)公園有一個圓形水池(中有假山),請想辦算出水面面積。
活動五:全課小結
通過本節(jié)課的學習你有哪些收獲?
圓的面積教案13
教材分析
圓的面積是六年級上冊的內容,本單元是在學生掌握了直線圖形的周長和面積,并且對圓已有初步認識的基礎上進行學習的。從認識圓入手,到圓的周長和面積,與直線圖形的學習順序是一致的。但是,學習圓是從學習直線圖形到學習曲線圖形,無論是內容本身,還是研究問題的.方法都有所變化。學生初步認識研究曲線圖形的基本方法——“化曲為直”、“化圓為方”,同時也滲透了曲線圖形與直線圖形的內在聯(lián)系,感受極限思想。在本單元中,本節(jié)內容安排在“認識圓,圓的周長”之后,這樣可以讓學生借鑒在學習圓周長時的經(jīng)驗來研究圓的面積;有利于讓學生感悟學習平面圖形的規(guī)律和方法。學習本節(jié)內容后,為后面學習扇形統(tǒng)計圖、以及圓柱、圓錐打下基礎;同時,圓在現(xiàn)實生活中的應用也非常廣泛,能夠運用所學知識解決實際問題。
學情分析
學生對圓的特征,多邊形面積的計算已基本掌握,但對于像圓這樣的曲線圖形的面積,學生是第一次接觸,如何把圓轉化成直線圖形具有一定的難度。學生對探究學習并不陌生,但在探究學習過程中,往往是盲目探究,因此,組織學習素材,讓學生形成合理猜想,進行有方向的探究也是教學中關注的問題;谝陨系乃伎,特制定以下教學目標:
教學目標
1、正確理解圓的面積的含義;理解和掌握圓的面積公式,會運用公式正確計算圓的面積。
2、經(jīng)歷圓的面積公式的推導過程,體驗實驗操作,邏輯推理的學習方法。
3、滲透轉化的數(shù)學思想和極限思想。體驗發(fā)現(xiàn)新知識的快樂,增強學生的合作交流意識和能力,培養(yǎng)學生學習數(shù)學的興趣。
教學重點和難點
教學重點:運用公式正確計算圓的面積。
教學難點:圓面積計算公式的推導過程。
圓的面積教案14
【第一課時】 圓的面積
一、 教學目標
1.知識與技能
理解圓的面積的概念,理解和掌握圓面積的計算公式,并能正確計算圓的面積,解答有關的實際問題。
2.過程與方法
引導學生利用已有的知識,通過猜想、操作、驗證、歸納等活動,經(jīng)歷圓面積計算公式的推導過程,培養(yǎng)學生觀察、操作、分析、概括的能力,發(fā)展空間觀念,滲透轉化、極限等數(shù)學思想方法。
3.情感態(tài)度與價值觀
通過自主探究圓面積轉化的過程,培養(yǎng)學生大膽創(chuàng)新,勇于嘗試,克服困難的精神,使學生體驗成功的樂趣。
二、教學重點
正確計算圓的面積。
三、教學難點
圓面積公式的推導。
四、教學具準備
課件、學具。
五、教學過程
(一)情境導入
1.敘述:俗話說的好:“民以食為天”。餐桌是家家戶戶必不可少的。這不,小明家就新購置了一張圓形的餐桌。為了起到保護作用,媽媽給了他一個任務,讓他去配一個與桌面相同大小的玻璃桌面。這可把小明難住了,這玻璃桌面該多大呢?【可使用圓的圖片2】 同學們,要想幫助小明解決他的問題我們需要用到什么知識呢?
今天這節(jié)課我們就來學習圓面積的求法。(板書題目:圓的面積)
2.看到今天的課題,你都想知道什么?
3.什么是圓的面積?在哪?摸摸看。
。▽W生摸手中圓形紙片,并用手指出圓的面積)
過渡語:圓的面積怎樣求呢?在這里,我們不妨先回憶一下其它圖形面積的'推導過程。
(二)復習舊知識
1.你還記得我們已經(jīng)學過了哪些圖形的面積求法嗎?
。ㄉ洪L方形、正方形、平行四邊形、三角形、梯形)
2.回憶一下,平行四邊形面積計算公式我們是怎樣推導出來的?(課件演示)
3.問:其它圖形呢?(學生簡要敘述其他面積推導過程)
4.小結:這樣看來,當我們遇到新問題時,往往可以借助已有的知識進行解決。
(三)學習新課
1.請你猜猜看,圓的面積公式應該怎么推導出來?
。ㄉ恨D化成已知的圖形進行推導)
2.怎么轉化?想想辦法。任意的分成幾份行嗎?
。ㄉ貉貓A的直徑將圓平均分成若干份)
3.下面請大家動手實際拼擺一下,看看自己的想法能否實現(xiàn)。請看活動要求:
(1)以組為單位,先擺圖形。
。2)看看拼出的圖形的底和高與圓的關系,并推導圓的面積公式。
。3)有問題及時記錄,以便討論。
。▽W生動手拼擺并貼在白紙上)
4.你們遇到什么問題了嗎?
。ㄉ哼叢皇侵钡模菑澋模。
5.誰能幫助他解決這個問題?
(學生談自己的想法)
6.是的,邊不是直的這可怎么辦呢?我們已拼成長方形為例,當我們把圓平均分成四份,拼成的圖形是這樣的;把圓平均分成8份,拼成的圖形是這樣的;把圓平均分成16份,拼成的圖形是這樣的;把圓平均分成32份;拼成的圖形是這樣的。(課件展示)
【可使用圓的圖片27】
7.同學們請你對比大屏幕上拼得的這幾幅圖,你有什么想法嗎?
(學生談自己的想法)
8.看來,把圓平均分的份數(shù)越多,曲線越接近于線段,拼得的圖形越接近我們所學過的圖形。當分成無數(shù)份時,曲線也就變成了直線。這個問題解決了么?下面繼續(xù)小組合作,推導圓面積計算公式。
。▽W生談自己的想法)
9.匯報不同推導方法:
轉化成長方形的:
長方形的面積=a × b 圓的面積=c×r 2
=π r × r
。溅 r 2
轉化成平行四邊形的:
平行四邊形的面積= a × h
圓的面積= c × r 2
。溅 r × r
。溅 r 2
轉化成三角形的:
三角形的面積= 1× a × h 2
圓的面積= 1c×4r 24
c× r 2 =
。溅 r 2
轉化成梯形的: 梯形面積=1×(a+b)× h 2
15c3c×(+)×2r 21616
1c××2r 22
c× r 2圓形面積= ==
=π r 2
10.觀察一下,這些推導過程有什么相同的地方?
。ㄉ憾际菍A轉化成已知圖形去推導的)
11.總結:由此可知,我們在推導圓面積計算公式的時候可以用全部的小扇形推導,也可以用一個小扇形推導,當然也可以用部分小扇形推導。
現(xiàn)在我們圓面積的計算公式已經(jīng)推導出來了,小明的問題可以解決了我嗎?要想解決它的問題我們需要知道哪些條件?(圓的直徑、半徑或周長)
(四)鞏固練習
1.求圓的面積(單位:厘米)
r=3 答案:s=28.26(平方厘米)
d=20答案:s=314(平方厘米)
c=125.6答案:s=1256(平方厘米)
2.小明測量出桌面的直徑是2米,你能算出玻璃桌面的面積嗎?
答案:3.14×22 =12.56(平方米)
3.判斷
。1)直徑是2厘米的圓,它的面積是12.56平方厘米。()
。2)兩個圓的周長相等,面積也一定相等。()
。3)圓的半徑越大,圓所占的面積也越大。()
。4)圓的半徑擴大3倍,它的面積擴大6倍。 ()
4.聽故事解題:
巴依老爺買來一群羊。
巴依老爺說:“阿凡提,快把新買的羊趕倒圈里去”。
阿凡提說:“老爺,這個長方形羊圈太小了!”
巴依老爺:“什么,太小了?你不把羊全部趕進去,哼哼,你的工錢就別拿了!要不,你自己花錢買些材料,把羊圈圍大些!
阿凡提想:“該怎么辦呢?怎么樣才能既不花錢另買材料,又能夠讓羊圈的面積變大呢?”
同樣聰明的同學們,你們能幫阿凡提想個辦法嗎?并且請你說明你的理由。
(五)小結
今天這節(jié)課你有什么收獲?
【第二課時】 圓環(huán)面積
一、 教學目標
1.知識與技能
掌握圓環(huán)面積的計算方法,能靈活解決生活中相關的簡單實際問題。
2.過程與方法
在經(jīng)歷畫圓環(huán)、剪圓環(huán)的活動過程中,初步感受圓環(huán)的特點、形成過程,進而探索出圓環(huán)面積計算的方法。培養(yǎng)學生觀察、動手操作、比較、分析、概括等能力。
3.情感態(tài)度與價值觀
進一步體驗圖形與生活的聯(lián)系,感受平面圖形的學習價值,提高學習數(shù)學的興趣。
二、教學重點
圓環(huán)的特征、圓環(huán)面積公式的推導及運用。
三、教學難點
靈活運用圓環(huán)面積的計算方法解決相關的簡單實際問題。
四、教學具準備
課件、學具。
五、教學過程
(一)學習方法回顧、鋪墊回憶一下
我們在推導圓面積計算公式時用到了什么學習方法?
(生:把圓形轉化成學過的平面圖形,利用舊知識推導出新知識。)
這也就是我們常說的遇到不會的想會的,把新知識轉化成了舊知識解決。 板書:不會
想 會
新 舊
這節(jié)課我們繼續(xù)用這種方法研究新問題。
(二)創(chuàng)設實際應用的問題情境
1.同學們你們喜歡看動畫片嗎?今天老師帶來了幾張光盤,看,這是什么?
(1)動畫光盤(2)歌曲光盤
。3)空白封面光盤
2.想知道這張光盤的內容嗎?我們一起來看看。
欣賞學生的校園活動照片。
這些照片見證了我們同學6年來快樂的校園生活,非常珍貴。想不想把它珍藏起來?老師打算把這些照片刻成光盤,等你們畢業(yè)時當畢業(yè)禮物送給你們好嗎?
3.現(xiàn)在這張光盤的封面還空著呢,你想不想親自為它設計一個有紀念意義的封面呢?要進行設計,咱們先了解一下哪部分是可以進行封面設計的。
4.小組內摸一摸準備的光盤實物,再讓學生實投指一指。
師課件演示(由實物抽象出線條圖形、涂色圖形)【可使用圓動畫14】
5.這個圖形有什么特點?
生:由兩個圓組成,它們的圓心是相同的。(課件點擊出圓心)
6.師說明:這樣兩個同心圓所夾的部分我們把它叫做圓環(huán)。
板書課題:圓環(huán)
外面的圓我們叫它外圓,里面的小圓我們叫它內圓。兩個圓周之間的距離我們叫做環(huán)寬。
圓的面積教案15
一、教學目標
【知識與技能】
掌握圓的面積計算公式,并能利用公式正確解決簡單問題。
【過程與方法】
通過操作、觀察、比較等活動,自主探索圓的面積計算公式,滲透轉化的數(shù)學思想方法。
【情感、態(tài)度與價值觀】
感受數(shù)學與生活的聯(lián)系,激發(fā)學習興趣。
二、教學重難點
【教學重點】
圓的面積計算公式。
【教學難點】
圓的面積計算公式的推導過程。
三、教學過程
(一)導入新課
創(chuàng)設情境:呈現(xiàn)校園中的圓形草坪,提問學生如何求解圓形草坪的占地面積。引導學生通過已有認知,認識到解決這個問題實際就是求這個圓的面積,從而引出課題。
(二)講解新知
提出問題:之前的圖形面積公式是如何推導的?
學生通過回憶,討論,得到是通過轉換成學過的圖形來推導得到的。
追問:能否將圓的圖形轉換成之前的圖形?
組織學生動手操作、合作探究,四人為一小組,討論分享自己的思路與剪拼過程,然后請各組的代表進行全班交流。
預設1:將圓平均分成4份,剪切拼接之后,沒有得到之前圖形;
預設2:將圓平均分成8份,剪切拼接之后,得到一個近似平行四邊形;
預設3:將圓平均分成16份,剪切拼接之后,得到一個近似長方形。
老師在此基礎上進行展示:大屏幕展示將圓平均分為32份,64份,128份,256份……的'動圖,讓學生觀察其特點。
學生能夠發(fā)現(xiàn)圓平均分的份數(shù)越多,拼成的圖形越接近于長方形。
進一步追問:觀察原來的圓和轉化后的這個近似長方形,發(fā)現(xiàn)他們之前有哪些等量關系?
預設1:長方形的面積等于圓的面積;
預設2:長方形的長近似等于圓周長的一半;
預設3:長方形的寬近似等于圓的半徑。
【圓的面積教案】相關文章:
圓的面積教案(精選13篇)05-11
小學數(shù)學圓的面積的教案04-18
圓的面積教學設計教案12-04
圓的面積教案15篇03-31
《圓的面積》教學教案設計03-23
圓的面積計算小學數(shù)學教學教案03-22
圓的面積教學設計教案7篇12-04
圓的面積教學設計教案(7篇)12-04
圓的面積教案模板錦集九篇10-19