高中數(shù)學的學習方法5篇[精選]
在平日的學習、工作和生活里,大家都在不斷地學習,掌握學習方法,可以幫助大家更加高效的學習。那么,大家知道要怎樣正確高效的學習嗎?下面是小編收集整理的高中數(shù)學的學習方法,歡迎閱讀,希望大家能夠喜歡。
高中數(shù)學的學習方法1
制定計劃和奮斗目標
復習數(shù)學時,要制定好計劃,不但要有本學期大的規(guī)劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,如按照老師的復習進度,今天復習到什么知識點,就應(yīng)該在今天之內(nèi)掌握該知識點,加深對該知識點的理解,研究該知識點考查的不同側(cè)面、不同角度。
在每天的復習計劃里,要留有一定的時間看課本,看筆記,回顧過去知識點,思考老師當天講了什么知識,歸納當天所學的知識?梢哉f,每天的習題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計劃時注意。
嚴防題海戰(zhàn)術(shù)
做習題是為了鞏固知識、提高應(yīng)變能力、思維能力、計算能力。學數(shù)學要做一定量的習題,但學數(shù)學并不等于做題,在各種考試題中,有相當?shù)牧曨}是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習題是要通過做一定量的習題達到對解題方法的展移而實現(xiàn)的.,但,隨著高考的改革,高考已把考查的重點放在創(chuàng)造型、能力型的考查上。
因此要精做習題,注意知識的理解和靈活應(yīng)用,當你做完一道習題后不訪自問:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習題中有什么解題的通性?實現(xiàn)問題的完全解決我應(yīng)用了怎樣的解題策略?只有這樣才會培養(yǎng)自己的悟性與創(chuàng)造性,開發(fā)其創(chuàng)造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強的題目時可以有一個科學的方法解決它。
歸納數(shù)學大思維
數(shù)學學習其主要的目的是為了培養(yǎng)我們的創(chuàng)造性,培養(yǎng)我們處理事情、解決問題的能力,因此,對處理數(shù)學問題時的大策略、大思維的掌握顯得特別重要,在平時的學習時應(yīng)注重歸納它。在平時聽課時,一個明知的學生,應(yīng)該聽老師對該題目的分析和歸納。但還有不少學生,不注意教師的分析,往往沉靜在老師講解的每一步計算、每一步推證過程。
聽課是認真,但費力,聽完后是滿腦子的計算過程,支離破碎。老師的分析是引導學生思考,啟發(fā)學生自己設(shè)計出處理這些問題的大策略、大思維。當教師解答習題時,學生要用自己的計算和推理已經(jīng)知道老師要干什么。另外,當題目的答案給出時,并不代表問題的解答完畢,還要花一定的時間認真總結(jié)、歸納理解記憶。要把這些解題策略全部納入自己的腦海成為永久地記憶,變?yōu)樽约航鉀Q這一類型問題的經(jīng)驗和技能。同時也解決了學生中會聽課而不會做題目的壞毛病。
積累考試經(jīng)驗
本學期每月初都有大的考試,加之每單元的單元測驗和模擬考試有十幾次,抓住這些機會,積累一定的考試經(jīng)驗,掌握一定的考試技巧,使自己應(yīng)有的水平在考試中得到充分的發(fā)揮。其實,考試是單兵作戰(zhàn),它是考驗一個人的承受能力、接受能力、解決問題等綜合能力的戰(zhàn)場。這些能力的只有在平時的考試中得到培養(yǎng)和訓練。
高中數(shù)學的學習方法2
課前預習
一個老生常談的話題,也是提到學習方法必將的一個,話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預習的能有幾人,課前預習可以使我們提前了解將要學習的知識,不至于到課上手足無措,加深我們聽課時的理解,從而能夠很快的吸收新知識。
記筆記
這里主要指的是課堂筆記,因為每節(jié)課的時間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來,一來可以加深我們的理解,好記性不如爛筆頭嗎,二來可以方便我們以后復習查看。如果對課堂講述的知識不理解的.同學更應(yīng)該做筆記,以便課下細細琢磨,直到理解為止。
課后復習
同預習一樣,是個老生常談的話題,但也是行之有效的方法,課堂的幾十分鐘不足以使我們學習和消化所學知識,需要我們在課下進行大量的練習與鞏固,才能真正掌握所學知識。
涉獵課外習題
想要在數(shù)學中有所建樹,取得好成績,光靠課本上的知識是遠遠不夠的,因此我們需要多多涉獵一些課外習題,學習它們的解題思路和方法,如果實在不能理解,可以問問老師或者同學。
學會歸類總結(jié)
學習數(shù)學要記得東西很多,尤其是數(shù)學公式,而且知識還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個公式,不但增加記憶量,而且容易忘,此時我們必須學會歸類總結(jié),把經(jīng)常搭配使用的公式等總結(jié)在一起記憶,這樣會大大的減少我們的記憶量,同時提高我們做題效率。
建立糾錯本
我們在學習數(shù)學的時候可能會經(jīng)常因為同樣一類題目而失分,自己也十分懊惱,其實有辦法可以解決這個問題,就是建立糾錯本,幫我們經(jīng)常會出錯的題目都集中在一起(當然只要是做錯過得都可以記錄上),然后空閑的時候看看,考試之前再看看,這樣考試的時候出現(xiàn)同類題目再出錯的幾率就降低好多。
寫考試總結(jié)
寫考試總結(jié)是一個好習慣,考試總結(jié)可以幫我們找出學習之中不足之處,以及我們知識的薄弱環(huán)節(jié),從而及時的彌補不足,以及以后的學習方向。
高中數(shù)學的學習方法3
抓要點提高學習效率。
(1)抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學習的根本依據(jù)。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內(nèi)容在教材中的地位,并將前后知識聯(lián)系起來,把握教材,才能掌握學習的主動性。
(2)抓問題暴露。對于那些典型的`問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有針對地起來,注重實效。
(3)抓解題指導。要合理選擇簡捷的運算途徑,要根據(jù)問題的條件和要求合理地選擇運算過程,抓住問題的關(guān)鍵突破口,提高自己的學習能力。(4)抓思維訓練。數(shù)學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養(yǎng)出來的。(5)抓40分鐘課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄望于課下去補,則會使學習效率大打折扣了。
教授學生重要的數(shù)學思想方法
對于學生和教師來說,如果不試著從數(shù)學的形式及演算中跳出來,去掌握數(shù)學的本質(zhì)內(nèi)容,那么挫折就會變得更加嚴重。因此,高中數(shù)學的學習,不能滿足于盲目地在題海中奮戰(zhàn),更加不能就題來論題。特別是高中階段的數(shù)學學習,要特別注重掌握數(shù)學的思想方法。那么,什么是數(shù)學思想方法?筆者認為,數(shù)學思想方法如果按層次分,可分為數(shù)學一般方法、邏輯學數(shù)學方法與數(shù)學思想方法。其中,數(shù)學一般方法主要是數(shù)學解題的具體方法及相關(guān)技能、技巧,比如高中數(shù)學里的配方法、換元法、待定系數(shù)法和判別式法等。
邏輯學數(shù)學方法主要是指數(shù)學的思維方法,主要有分析法、綜合法、歸納法和試驗法等。數(shù)學思想方法主要有函數(shù)與方程思想、化歸思想及數(shù)形結(jié)合思想等。通過對數(shù)學解題過程中最富有特色的典型智力活動進行分析和歸納,可以提煉出分析、解決數(shù)學問題的規(guī)律來,也就是要先弄清問題,再擬定解題計劃,接著實現(xiàn)解題計劃,最后進行回顧這四個階段。在數(shù)學教學中,教師要把好審題關(guān)、計算關(guān)及數(shù)學表達關(guān),要求學生對概念、公式和定理等知識點進行準確記憶,并能牢固掌握,還要學會運用這些知識開展計算、證明和邏輯推理。
高中數(shù)學的學習方法4
1、首先是精選題目,做到少而精。
只有解決質(zhì)量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數(shù)的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2、其次是分析題目。
解答任何一個數(shù)學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學問題實際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當然在這個過程中也反映出對數(shù)學基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
3、最后,題目總結(jié)。
解題不是目的,我們是通過解題來檢驗我們的學習效果,發(fā)現(xiàn)學習中的不足的,以便改進和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結(jié):
、僭谥R方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識,在解題過程中是如何應(yīng)用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
、勰懿荒馨呀忸}過程概括、歸納成幾個步驟(比如用數(shù)學歸納法證明題目就有很明顯的三個步驟)。
、苣懿荒軞w納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現(xiàn)成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結(jié)、歸納題目類型)。
高中數(shù)學導數(shù)的定義,公式及應(yīng)用總結(jié)
導數(shù)的定義:
當自變量的增量Δx=x-x0,Δx→0時函數(shù)增量Δy=f(x)- f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點可導,稱之為f在x0點的導數(shù)(或變化率)、
函數(shù)y=f(x)在x0點的導數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)]點的切線斜率(導數(shù)的幾何意義是該函數(shù)曲線在這一點上的切線斜率)。
一般地,我們得出用函數(shù)的導數(shù)來判斷函數(shù)的增減性(單調(diào)性)的法則:設(shè)y=f(x )在(a,b)內(nèi)可導。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個區(qū)間是單調(diào)增加的(該點切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個區(qū)間是單調(diào)減小的。所以,當f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值
求導數(shù)的步驟:
求函數(shù)y=f(x)在x0處導數(shù)的步驟:
①求函數(shù)的增量Δy=f(x0+Δx)-f(x0)
、谇笃骄兓
③取極限,得導數(shù)。
導數(shù)公式:
、 C'=0(C為常數(shù)函數(shù));
② (x^n)'= nx^(n-1) (n∈Q___);熟記1/X的導數(shù);
、 (sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (x<1) xlna="" 、="">0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減,="">0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f'(x)≥0。
(2)求函數(shù)單調(diào)區(qū)間的步驟(不要按圖索驥緣木求魚這樣創(chuàng)新何言?1、定義最基礎(chǔ)求法2、復合函數(shù)單調(diào)性)
、俅_定f(x)的.定義域;
、谇髮(shù);
③由(或)解出相應(yīng)的x的范圍、當f'(x)>0時,f(x)在相應(yīng)區(qū)間上是增函數(shù);當f'(x)<0時,f(x)在相應(yīng)區(qū)間上是減函數(shù)。--0,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減.-->--1)-->
2、函數(shù)的極值
(1)函數(shù)的極值的判定
①如果在兩側(cè)符號相同,則不是f(x)的極值點;
、谌绻诟浇淖笥覀(cè)符號不同,那么,是極大值或極小值、
3、求函數(shù)極值的步驟
、俅_定函數(shù)的定義域;
、谇髮(shù);
、墼诙x域內(nèi)求出所有的駐點與導數(shù)不存在的點,即求方程及的所有實根;④檢查在駐點左右的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值、
4、函數(shù)的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內(nèi)一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念;
(2)求f(x)在[a,b]上的最大值與最小值的步驟①求f(x)在(a,b)內(nèi)的極值;②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值。
高中數(shù)學的學習方法5
一、勤看書,學研究。
有些“自我感覺良好”的學生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”,變成事倍功半。因此,同學們從高一開始,增強自己從課本入手進行研究的意識:預習,復習?梢园衙織l定理、每道例題都當作習題,認真地重證、重解,并適當加些批注(如數(shù)學符號在不同范疇的含義,不同領(lǐng)域之間的關(guān)系),舉個例子:x+y=0可以是二元一次方程,寫成y=-x又可看成一次函數(shù)。特別是可以通過對典型例題的講解分析,最后抽象出解決這類問題的數(shù)學思想和方法,并做好書面的解題后的反思,總結(jié)出解題的一般規(guī)律和特殊規(guī)律,以便推廣和靈活運用。另外,希望你們要盡可能獨立解題,因為求解過程,也是培養(yǎng)分析問題和解決問題能力的一個過程,同時更是一個研究過程。
二、注重課堂,記好筆記。
首先,在課堂教學中培養(yǎng)好的聽課習慣是很重要的。聽當然是主要的,聽能使注意力集中,注意積極思考、分析問題,要把老師講的關(guān)鍵性部分聽懂、聽會。提高數(shù)學能力,鍛煉自己的思維,主要也是通過課堂來提高,要充分利用好課堂這塊陣地,學習數(shù)學的過程是活的,在隨著教學過程的發(fā)展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數(shù)學能力是隨著知識的發(fā)生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應(yīng)該從不同的能力角度來培養(yǎng)和提高。課堂上通過老師的教學,理解所學內(nèi)容在教材中的地位,弄清與前后知識的聯(lián)系等,只有把握住教材,才能掌握學習的主動。
其次,聽的時候不能光聽,為了往后復習,應(yīng)適當?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖。科學的記筆記可以提45鐘課堂效果。
再次,如果數(shù)學課沒有一定的速度,那是一種無效學習。慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養(yǎng)不出數(shù)學能力的,這就要求在數(shù)學學習中一定要有節(jié)奏(有目的進行訓練),這樣久而久之,思維的敏捷性和數(shù)學能力會逐步提高。
最后,在數(shù)學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對于那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結(jié)癥遺留下來,甚至沉淀下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
三、做好作業(yè),講究規(guī)范。
在課堂、課外練習中培養(yǎng)良好的作業(yè)習慣也很有必要。在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學能力是有害而無益的。抓數(shù)學學習習慣必須從高一年級主動抓起,無論從年齡增長的心理特征上講,還是從學習的不同階段的.要求上講都應(yīng)該進行學習習慣的培養(yǎng)。
四、寫好總結(jié),把握規(guī)律。
一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高。"不會總結(jié)的同學,他的能力就不會提高,挫折經(jīng)驗是成功的基石。"自然界適者生存的生物進化過程便是的例證。學習要經(jīng)?偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。通過與老師、同學平時的接觸交流,逐步總結(jié)出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面,簡單概括為四個環(huán)節(jié)(預習、上課、整理、作業(yè))和一個步驟(復習總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預習后聽課,先復習后做作業(yè),寫好每個單元的總結(jié))的學習習慣。善于歸納總結(jié)知識間的聯(lián)系。
學習數(shù)學并非我做題就可以取得好的成績,而是要將精力花在歸納總結(jié)上。特別對課本或課堂上出現(xiàn)的例題,只要善于總結(jié),就可以了解這一小節(jié)數(shù)學內(nèi)容有哪幾種題型,每種題目的一般解法和思路是什么,從而提高運用所學知識分析解題的能力。同時,每學完一個單元,要建立本單元的知識框架,將本章的主要思路、推理方法及運用技巧等轉(zhuǎn)變成自己的實際技能。
五、注重反思,提升能力
學習要注重反思,練好悟性。老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵外延,分析重點難點,突出思想方法,而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是忙于趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。數(shù)學學科必須培養(yǎng)運算能力、邏輯思維能力、空間想象力以及運用所學知識分析問題、解決問題的重任,它的特點是具有高度的抽象性、邏輯性與廣泛的適用性,對能力的要求較高。數(shù)學能力只有在數(shù)學思想方法不斷地運用反思中才能培養(yǎng)和提高。數(shù)學內(nèi)容的巨變和學習方法的落后,在學習高中數(shù)學的過程中,肯定會遇到不少困難和問題,同學們要有克服困難的勇氣和信心,勝不驕,敗不餒,千萬不能讓問題堆積如山,形成惡性循環(huán),而是要在老師的引導下,尋求解決問題的辦法,培養(yǎng)分析問題,解決問題的能力,這就是的悟性。
學會發(fā)現(xiàn)問題,并重視質(zhì)疑在學習中?吹匠煽兒玫耐瑢W,總是有很多問題問老師。提出疑問不僅是發(fā)現(xiàn)真知的起點,而且是發(fā)明創(chuàng)造的開端。提高學習成績的過程就是發(fā)現(xiàn),提出并解決疑問的過程。大膽向老師質(zhì)疑,不是笨的反映,而是在追求真知、積極進取的表現(xiàn)。在聽課中,不但要“知其然”,還要“知其所以然”,這樣疑問也就在不斷產(chǎn)生,再加以分析思考使問題得以解決,學習也就得到了長進。
【高中數(shù)學的學習方法】相關(guān)文章:
高中數(shù)學的學習方法02-04
高中數(shù)學學習方法10-13
高中數(shù)學學習方法心得體會03-22
高一學習方法指導與學習方法12-07
英語學習方法06-13
學習方法與技巧06-08
數(shù)學的學習方法05-16
拼音學習方法11-15
科學的學習方法10-14